

WESPAC IX 2006

The 9th Western Pacific Acoustics Conference Seoul, Korea, June 26-28, 2006

University of Parma

ROOM IMPULSE RESPONSES AS TEMPORAL AND SPATIAL FILTERS

Angelo Farina

Industrial Engineering Dept. University of Parma - ITALY HTTP://www.angelofarina.it

Topics

- Traditional time-domain measurements with omnidirectional transducers
- Advanced impulse response measurement methods
- Directional transducers, the first attempts of spatial analysis
- Orthonormal decomposition of the spatial properties in spherical harmonics: the Ambisonics method
- The reciprocity principle: directive microphones and directive sources
- Generalization of higher-order spherical harmonics representation of both source and receiver directivity
- Joining time and space: from Einstein's view to a comprehensive data structure representing the acoustical transfer function of a room
- Practical usages of measured (or numerically simulated) temporal-spatial impulse response

Basic sound propagation scheme

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

Traditional measurement methods

Pulsive sources: ballons, blank pistol

18.05.2006 Angelo Farina

Modern electroacoustical methods

- The sound is generated by means of an omnidirectional loudspeaker
- The signal is computer-generated
- The same computer is also employed for recording the room'response by means of one or more omnidirectional microphones
- Also directive microphones can be used: binaural, figure-of-eight
- Different types of test signals have been developed, providing good immunity to background noise and easy deconvolution of the impulse response:
 - MLS (Maximum Lenght Sequence, pseudo-random white noise)
 - TDS (Time Delay Spectrometry, which basically is simply a linear sine sweep, also known in Japan as "stretched pulse")
 - ESS (Exponential Sine Sweep)
- Each of these test signals can be employed with different deconvolution techniques, resulting in a number of "different" measurement methods
- Due to theoretical and practical considerations, the preference is nowadays generally oriented for the usage of ESS with not-circular deconvolution

- The desidered result is the linear impulse response of the acoustic propagation h(t). It can be recovered by knowing the test signal x(t) and the measured system output y(t).
- It is necessary to exclude the effect of the not-linear part K and of the background noise n(t).

Hardware: PC and audio interface

Hardware: loudspeaker & microphone

Software

Adobe Audition 1.5

Checking Recovery Files...

Steve Balo, Nagendra Bangalore, Mat Chavez, Ron Day, Shawn Deyell, Paul Ellis, Yukiko Eron, Steve Fazio, Hideya Gamo, Peter Green, David Johnston, Bryce Jonasson, Eric Juteau, Rolf Kosmalski, Jason Levine, Makoto Meguro, Ichirou Nakamura, Todd Orler, Chris Robinson, John Rush, Hart Shafer, Nariman Sodelfi, Rick Wilson, Ellen Wixted, Shenzhi Zhang

Adobe® Audition™ © 1992-2004 Adobe Systems, Incorporated. All rights reserved. See the legal notices in the about box.

Farina UNIPR Adobe

1.5 version

Aurora Plugins

Generate MLS	mis
Deconvolve MLS	
Generate Sweep	
Deconvolve Sweep	t.
Convolution	×))
Kirkeby Inverse Filter	KX
Speech Transm. Index	STI

MLS method

X(t) is a periodic binary signal obtained with a suitable shift-register, configured for maximum lenght of the period.

$L = 2^{N} - 1$

- The re-recorded signal y(i) is cross-correlated with the excitation signal thanks to a fast Hadamard transform. The result is the required impulse response h(i), if the system was linear and time-invariant

$$\mathbf{h} = \frac{1}{\mathbf{L}+1} \cdot \mathbf{\tilde{M}} \cdot \mathbf{y}$$

Where M is the Hadamard matrix, obtained by permutation of the original MLS sequence m(i)

$$\widetilde{M}(i, j) = m[(i+j-2)modL] - 1$$

UNIPR / ASK Industries | All Rights Reserved | Confidential

MLS example

18.05.2006 Angelo Farina

MLS example

🐮 Untitled.ses* - Ad	obe Audition							
Ele Edit View Insert	Effects Options	Mindow Help		and in the local state of the		- Contraction Contract		
The MARY PROBE	and the second s	- Instantion						
	Taxa a second							
In Tank 2"	TT DAT							
	Test Contest							
		_						
	The state							
	KING ALLAN	The street street	NUMBER OF STREET	History (Hostory (Ho		(Contraction) (Contraction)	-	
	and the second							
							-	
I taken bermen bister								
Dare file Taxes: Set Sy-								
9.7.14								
d and a construction								and states and states
	1. <u> </u>	Part of the local data		1077 — 10011 —				
H								
8								
			+			in in A (1		
	(R. 61 28.			511099			ine ine	Industry Langel
10.36 23 25	AB			344900			Veni 1	630374 630374
indeg					Tiad	12 400	grade ad use of	17.25 ME 18.57 58 has

Deconvo	lve Mult	iple M	LS S	equ	×
- Input Date	a ———				
MLS Orde	ler 15			в 🗾	
N. of mea	surements		1		
N. of sequ	N. of sequences / measurement				
N. of first sequences to skip					
- Output Re	esults				
N. of samples for each sequence 32767					
N. of samples to skip			0		
□ <u>S</u> cale e □ <u>R</u> emov	ach respons e DC compo	e separat nent	ely		
User: Andreas Langhoff					
Reg. key:	*0*0*0*0*				
ОК	С	ancel		<u>H</u> elp	

18.05.2006 Angelo Farina

 x(t) is a sine signal, which frequency is varied exponentially with time, starting at f₁ and ending at f₂.

Test Signal – x(t)

 The not-linear behaviour of the loudspeaker causes many harmonics to appear

Inverse Filter – z(t)

The deconvolution of the IR is obtained convolving the measured signal y(t) with the inverse filter z(t) [equalized, time-reversed x(t)]

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

The "time reversal mirror" technique is employed: the system's impulse response is obtained by convolving the measured signal y(t) with the time-reversal of the test signal x(-t). As the log sine sweep does not have a "white" spectrum, proper equalization is required

Test Signal x(t)

18.05.2006 Angelo Farina

Result of the deconvolution

The last impulse response is the linear one, the preceding are the harmonics distortion products of various orders

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

IR Selection

 After the sequence of impulse responses has been obtained, it is possible to select and insulate just one of them:

ESS example

18.05.2006 Angelo Farina

ESS example

18.05.2006 Angelo Farina

Maximum Length Sequence vs. Sweep

Post processing of impulse responses

 A special plugin has been developed for the computation of STI according to IEC-EN 60268-16:2003

STI	& Octave Band Anal	ysis 🔀		
Calil Calil	Full Scale C Leq bration value (dB): 120.00	Compute Octave Band Spectrum		
	Load SPL Values from File	Save SPL Values to File		
Hz 125 250 500 1k 2k 4k 8k	BackGind Noise Level Signal Level 48.0 70.9 45.0 70.9 42.0 67.2 39.0 61.2 36.0 55.2 33.0 49.2 30.0 43.2 Left/Mono Right	Signal + Noise Level 70.9 Edit 70.9 Edit 67.2 Edit 61.2 Edit 55.3 Edit 49.3 Edit 43.4 Edit Left/Mono Right		
- Impu First	Ilse Response Analysis Arrival Threshold (% of Full Scale):	20 Compute STI		
User: Reg. k	Angelo Farina	Close <u>H</u> elp		

Post processing of impulse responses

 A special plugin has been developed for performing analysis of acoustical parameters according to ISO-3382

Acoustical Paramete 🗙
User Defined Reverberation Time Extremes: (-5. dB , -15. dB)
Enable Noise Correction
🗖 EDT without linear regression
First Arrival Time Threshold (% of FS): 4
Peak SPL value corresponding to FS 120.
C Stereo Mode
O 2 Omnidirectional Microphones
Soundfield Microphone (WY)
C Omni/Eight microphone
C p-p Sound Intensity Probe
d (mm): 12.0 c (m/s): 340.0
C Binaural Dummy Head
IACC Integration
User: Angelo Farina
Reg. key: XXXXXXX
OK Cancel <u>H</u> elp

The new AQT plugin for Audition

 The new module is still under development and will allow for very fast computation of the AQT (Dynamic Frequency Response) curve from within Adobe Audition

Spatial analysis by directive microphones

- The initial approach was to use directive microphones for gathering some information about the spatial properties of the sound field "as perceived by the listener"
- Two apparently different approaches emerged: binaural dummy heads and pressure-velocity microphones:

Binaural microphone (left)

and

variable-directivity microphone (right)

"objective" spatial parameters

- It was attempted to "quantify" the "spatiality" of a room by means of "objective" parameters, based on 2-channels impulse responses measured with directive microphones
- The most famous "spatial" parameter is IACC (Inter Aural Cross Correlation), based on binaural IR measurements

"objective" spatial parameters

- Other "spatial" parameters are the Lateral Energy ratios: LE, LF, LFC
- These are defined from a 2-channels impulse response, the first channel is a standard omni microphone, the second channel is a "figure-of-eight" microphone:

0ms

0ms

0ms

Robustness of spatial parameters

- Both IACC and LF depend strongly on the orientation of the microphones
- Binaural and pressure-velocity measurements were performed in 2 theatres employing a rotating table for turning the microphones

18.05.2006 Angelo Farina

Are binaural measurents reproducible?

 Experiment performed in anechoic room - same loudspeaker, same source and receiver positions, 5 binaural dummy heads

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

Are binaural measurents reproducible?

 90° incidence - at low frequency IACC is almost 1, at high frequency the difference between the heads becomes evident

18.05.2006 Angelo Farina

Are binaural measurents reproducible?

Diffuse field - the difference between the heads is now dramatic

Are LF measurents reproducible?

 Experiment performed in the Auditorium of Parma - same loudspeaker, same source and receiver positions, 5 pressure-velocity microphones

Are LF measurents reproducible?

At 7.5 m distance, the results already exhibit significant scatter

Are LF measurents reproducible?

• At 25 m distance, the scatter is even larger....

3D extension of the pressure-velocity measurements

 The Soundfield microphone allows for simultaneous measurements of the omnidirectional pressure and of the three cartesian components of particle velocity (figure-of-8 patterns)

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

3D Impulse Response (Gerzon, 1975)

The Waves project (2003)

- The original idea of Michael Gerzon was finally put in practice in 2003, thanks to the Israeli-based company WAVES
- More than 50 theatres all around the world were measured, capturing 3D IRs (4-channels B-format with a Soundfield microphone)
- The measurments did also include binaural impulse responses, and a circular-array of microphone positions
- More details on WWW.ACOUSTICS.NET

18.05.2006 Angelo Farina

Directivity of transducers

LookLine D200 dodechaedron

Directivity of transducers

Soundfield ST-250 microphone

What about source directivity ?

- Current 3D IR sampling is still based on the usage of an "omnidirectional" source
- The knowledge of the 3D IR measured in this way provide no information about the soundfield generated inside the room from a directive source (i.e., a musical instrument, a singer, etc.)
- Dave Malham suggested to represent also the source directivity with a set of spherical harmonics, called O-format - this is perfectly reciprocal to the representation of the microphone directivity with the B-format signals (Soundfield microphone).
- Consequently, a complete and reciprocal spatial transfer function can be defined, employing a 4-channels O-format source and a 4-channels Bformat receiver:

1st order MIMO impulse response

 If only spherical harmonics of order 0 and 1 are taken into account, a complete spatial transfer function measurement requires 16 impulse responses:

$$\begin{cases} y_{w} \\ y_{x} \\ y_{y} \\ y_{z} \end{cases} = \begin{bmatrix} h_{ww} & h_{wx} & h_{wy} & h_{wz} \\ h_{xw} & h_{xx} & h_{xy} & h_{xz} \\ h_{yw} & h_{yx} & h_{yy} & h_{yz} \\ h_{zw} & h_{zx} & h_{zy} & h_{zz} \end{bmatrix} \otimes \begin{cases} x_{w} \\ x_{x} \\ x_{y} \\ x_{z} \end{cases}$$
 or $\{y\} = [h] \otimes \{x\}$

 Once these 16 IRs have been measured, it is possible to compute the response of the room with a source and a receiver having arbitrary directivity patterns, given by the O-format source functions {r_w, r_x, r_y, r_z}, and the B-format receiver functions {r_w, r_x, r_y, r_z}:

$$\mathbf{t}_{\mathrm{sr}} = \{\mathbf{r}\} \otimes \{\mathbf{y}\} = \{\mathbf{r}\} \otimes [\mathbf{h}] \otimes \{\mathbf{s}\}$$

 In which also each of {s} and {r} are sets of 4 impulse responses, representing the frequency-dependent directivities of the source and of the receiver

Limits of the 1st-order method

 Albeit mathematically elegant and easy to implement with currently-existing hardware, the 1st-order method presented here cannot represent faithfully the complex directivity pattern of an human voice or of an human ear:

Limits of the 1st-order method

• The polar pattern of a binaural dummy head is even more complex, as shown here (1 kHz, right ear):

How to get better spatial resolution?

- The answer is simple: analyze the spatial distribution of both source and receiver by means of higher-order spherical harmonics expansion
- Spherical harmonics analysis is the equivalent, in space domain, of the Fourier analysis in time domain
- As a complex time-domain waveform can be though as the sum of a number of sinusoidal and cosinusoidal functions, so a complex spatial distribution around a given notional point can be expressed as the sum of a number of spherical harmonic functions

Higher-order spherical harmonics expansion

3°-order microphone (Trinnov - France)

 Arnoud Laborie developed a 24-capsule compact microphone array - by means of advanced digital filtering, spherical ahrmonic signals up to 3° order are obtained (16 channels)

18.05.2006 Angelo Farina

4°-order microphone (France Telecom)

 Jerome Daniel and Sebastien Moreau built samples of 32-capsules spherical arrays - these allow for extractions of microphone signals up to 4° order (25 channels)

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

Multichannel software for high-order

 Plogue Bidule can be used as multichannel host software, running a number of VST plugins developed by France Telecom - these include spherical harmonics extraction from the spherical microphone arrays, rotation and manipulation of the multichannel B-format signals, and final rendering either on head-.tracked headphones or on a static array of loudspeakers (high-order Ambisonics)

Verification of high-order patterns

 Sebastien Moreau and Olivier Warusfel verified the directivity patterns of the 4°-order microphone array in the anechoic room of IRCAM (Paris)

Frequency extension of the patterns

UNIPR / ASK Industries | All Rights Reserved | Confidential

High-order sound source

 University of California Berkeley's Center for New Music and Audio Technologies (CNMAT) developed a new 120-loudspeakers, digitally controlled sound source, capable of synthesizing sound emission according to spherical harmonics patterns up to 5° order.

Technical details of high-order source

Class-D embedded amplifiers

 Embedded ethernet interface and DSP processing

 Long-excursion special Meyer Sound drivers

18.05.2006 Angelo Farina

Accuracy of spatial synthesis

 The spatial reconstruction error of a 120-loudspeakers array is frequency dependant, as shown here:

The error is acceptably low over an extended frequency range up to 5°-order

N inputs

- A set of digital filters can be employed for sinthesizing the required spatial pattern (spherical harmonis), either when dealing with a microphone array or when dealing with a loudspeaker array
- Whatever theory or method is chosen, we always start with N input signals x_i, and we derive from them M output signals y_j
- And, in any case, each of these M outputs can be expressed by:

Example with a microphone array

The sound field is sampled in N points by means of a microphone array

- $y_j(t)$ Is the time-domain sampled waveform of a wave with well defined spatial characteristics, for example:
 - a spherical wave centered in a precise emission point P_{source}
 - a plane wave with a certain direction
 - a spherical harmonic referred to a receiver point $\mathsf{P}_{\mathsf{rec}}$

Traditional design of digital filters

- The processing filters h_{ij} are usually computed following one of several, complex mathematical theories, based on the solution of the wave equation (often under certaing simplifications), and assuming that the microphones are ideal and identical
- In some implementations, the signal of each microphone is processed through a digital filter for compensating its deviation, at the expense of heavier computational load

- No theory is assumed: the set of h_{ij} filters are derived directly from a set of impulse response measurements, designed according to a leastsquares principle.
- In practice, a matrix of filtering coefficients, is formed, and the matrix has to be numerically inverted (usually employing some regularization technique).
- This way, the outputs of the microphone array are maximally close to the ideal responses prescribed
- This method also inherently corrects for transducer deviations and acoustical artifacts (shielding, diffractions, reflections, etc.)

Example: synthesizing 0-order shape

The microphone array impulse responses $c_{k,i}$, are measured for a number of *P* incoming directions.

k=1...P sources

$$C = \begin{vmatrix} c_{1,1} & c_{2,1} & c_{k,1} & c_{P,1} \\ c_{1,2} & c_{2,2} & c_{k,2} & c_{P,2} \\ c_{1,i} & c_{2,i} & c_{k,i} & c_{P,i} \\ c_{1,N} & c_{2,N} & c_{k,N} & c_{P,N} \end{vmatrix}$$

...we get the **filters** to be applied to the microphonic signals from processing the matrix of measured impulse responses

Example: synthesizing 0-order shape

We design the filters in such a way that the response of the system is the prescribed theoretical function v_k for the k-th source (an unit-amplitude Dirac's Delta function in the case of the example, as the 0th-order function is omnidirectional).

So we set up a linear equation system of P equations, imposing that:

 $\sum_{i=1}^{N} h_{i,0} \otimes c_{1,i} = \delta$ $\sum_{i=1}^{N} h_{i,0} \otimes c_{2,i} = \delta$ Lets call v_k the right-hand vector of known results (they will be different for higher-order shapes). Once this matrix of N inverse filters are computed (for example, employing the Nelson/Kirkeby method), the output of the $\sum_{i=1}^{N} h_{i,0} \otimes c_{k,i} = \delta$ microphone array, synthesizing the prescribed Oth-order shape, will again be simply: $\mathbf{y}_0 = \sum_{i=1}^{N} \mathbf{x}_i \otimes \mathbf{h}_{i,0}$ $\sum_{i=1}^{N} h_{i,0} \otimes c_{P,i} = \delta$

18.05.2006 Angelo Farina

UNIPR / ASK Industries | All Rights Reserved | Confidential

System's least-squares inversion

- For computing the matrix of N filtering coefficients h_{i0}, a least-squares method is employed.
- A "total squared error" ε_{tot} is defined as:

$$\varepsilon_{tot} = \sum_{k=1}^{P} \left[\sum_{i=1}^{N} (h_{i0} \otimes c_{ki}) - v_k \right]^2$$

 A set of N linear equations is formed by minimising E_{tot}, imposing that:

$$\frac{\partial \varepsilon_{tot}}{\partial h_{i0}} = 0 \qquad (i = 1...N)$$

Kirkeby's regularization

 During the computation of the inverse filter, usually operated in the frequency domain, one usually finds expressions requiring to compute a ratio between complex spectra:

- Computing the reciprocal of the denominator D is generally not trivial, as the inverse of a complex, mixed-phase signal is generally unstable.
- The Nelson/Kirkeby regularization method is usually employed for this task:

$$InvD(\omega) = \frac{Conj[D(\omega)]}{Conj[D(\omega)] \cdot D(\omega) + \varepsilon(\omega)}$$

 $H = A \cdot InvD$

 At very low and very high frequencies it is advisable to increase the value of ε.

Example for a 4-channel mike

- DPA-4 A-format microphone
- 4 closely-spaced cardioids
- A set of 4x4 filters is required for getting B-format signals
- Global approach for minimizing errors over the whole sphere

IR measurements on the DPA-4

84 IRs were measured, uniformly scattered around a sphere

18.05.2006 Angelo Farina

Computation of the inverse filters

- A set of 16 inverse filters is required (4 inputs, 4 outputs = 1°-order B-format)
- For any of the 84 measured directions, a theoretical response can be computed for each of the 4 output channels (W,X,Y,Z)
- So 84x4=336 conditions can be set:

$$c_{1} \otimes h_{1,W} + c_{2} \otimes h_{2,W} + c_{3} \otimes h_{3,W} + c_{4} \otimes h_{4,W} = out_{k,W}$$

$$c_{1} \otimes h_{1,X} + c_{2} \otimes h_{2,X} + c_{3} \otimes h_{3,X} + c_{4} \otimes h_{4,X} = out_{k,X}$$

$$c_{1} \otimes h_{1,Y} + c_{2} \otimes h_{2,Y} + c_{3} \otimes h_{3,Y} + c_{4} \otimes h_{4,Y} = out_{k,Y}$$

$$c_{1} \otimes h_{1,Z} + c_{2} \otimes h_{2,Z} + c_{3} \otimes h_{3,Z} + c_{4} \otimes h_{4,Z} = out_{k,W}$$

$$k = 1...84$$

Real-time implementation

18.05.2006 Angelo Farina

Complete high-order MIMO method

- Employing massive arrays of transducers, it is nowaday feasible to sample the acoustical temporal-spatial transfer function of a room
- Currently available hardware and software tools make this practical only up to 4° order, which means 25 inputs and 25 outputs
- A complete measurement for a given source-receiver position pair takes approximately 10 minutes (25 sine sweeps of 15s each are generated one after the other, while all the microphone signals are sampled simultaneously)
- However, it has been seen that real-world sources can be already approximated quite well with 2°-order functions, and even the human HRTF directivites are reasonally approximated with 3°-order functions.

Conclusions

- The sine sweep method revealed to be systematically superior to the MLS method for measuring electroacoustical impulse responses
- In fact, it is now employed in top-grade measurement systems, including Audio Precision (TM) or Bruel & Kjaer's DIRAC software
- Traditional methods for measuring "spatial parameters" proved to be unreliable and do not provide complete information
- The 1°-order Ambisonics method can be used for generating and recording sound with a limited amount of spatial information
- For obtained better spatial resolution, High-Order Ambisonics can be used, limiting the spherical-harmonics expansion to a reasonable order (2°, 3° or 4°).
- Experimental hardware and software tools have been developed (mainly in France, but also in USA), allowing to build an inexpensive complete measurement system
- From the complete matrix of measured impulse responses it is easy to derive any suitable subset, including an highly accurate binaural rendering over head-tracked headphones.