



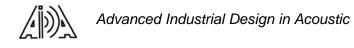
# Passive and Active Sonar Applications for a Non-Uniform and Low Cost Linear Array

Enrico Armelloni, Fons Adriansen, Angelo Farina.



Advanced Industrial Design in Acoustic Spin-off company of the University of Parma E-mail: armelloni@aidasrl.it




IED - Industrial Engineering Department University of Parma - Italy





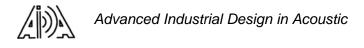
# Outline

- Hydrophones:
  - Specifics
  - Acoustic characterization (air)
- Measurement system
  - Array of hydrophones
  - Audio equipment
- Array: acoustic characterization
- Array applications:
  - "Passive mode": DOA estimation;
  - "Active mode": Target research and identification
- Conclusion





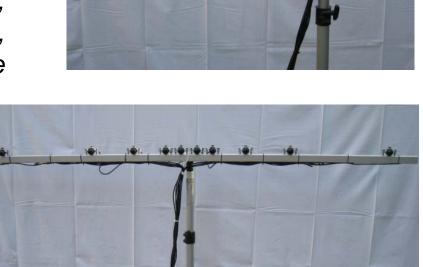
## **Hydrophones**

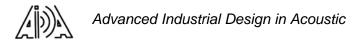

Aquarian Audio H2a-XLR" hydrophone (www.aqaud.com):



- low-cost;
- small dimension (25mm x 46mm);
- wide range of employment (10 Hz ÷ 100 kHz);
- easily interfaced with commercial audio devices (+48V phantom power required).
- Acoustic characterization (air): B&K 4189 Vs H2a-XLR:
  - Test signal: Linear sine sweep (0.5 ÷ 5 kHz);
  - H = H(Amplifier + Speaker + Medium + Transducer)
  - Frequency responses are comparable!








# **Array of receivers**

- "Aquarian Audio H2a-XLR" hydrophones array.
- <u>10 low-cost omnidirectional</u> <u>hydrophones</u> were mounted on a 2m long aluminum frame;
- <u>increasing distance between</u> <u>receivers (NULA)</u> [-0.875, -0.455, -0.250, -0.105, -0.035, +0.035, +0.105, +0.250, +0.455, +0.875 meter, w.r.t. the center];
- <u>Flexible mounting system</u> that allows to change easily the transducers positions in according to different design strategies

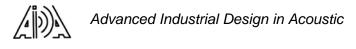






# **Audio equipment**

Measurement "chain" (8-channels): audio devices


Receiving system:

- <u>APHEX 1788</u> high precision microphone preamplifier with ADAT outputs (8 channels, Fs = 96 kHz);
- <u>RME AD648</u> ADAT to MADI converter (max 64 channels);

Transmitting system.

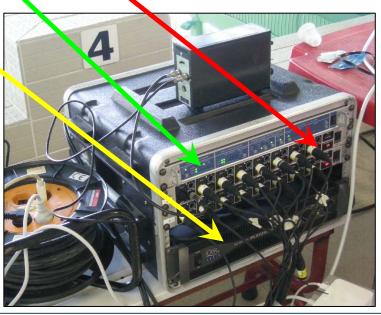
<u>QSC PLX-1202</u> power amplifier



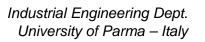




# **Audio equipment**


Measurement "chain" (16-channels): audio devices

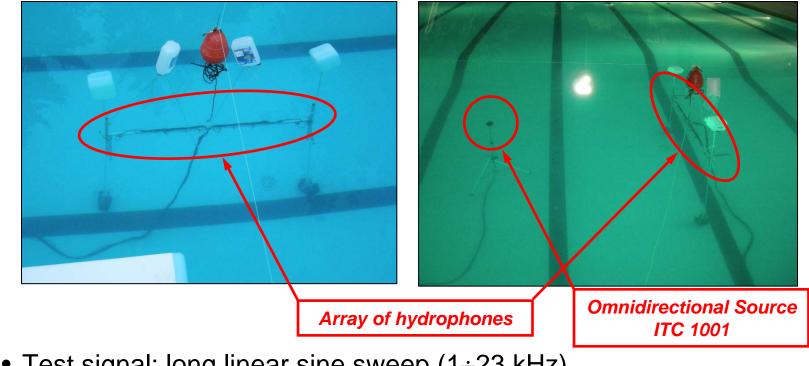
#### Receiving system:


- <u>N°2 Behringer Ultragain PRO-8 DIGITAL ADA8000</u> preamplifier with ADAT outputs (8 channels, Fs = 48 kHz);
- <u>RME AD648</u> ADAT to MADI converter (max 64 channels);

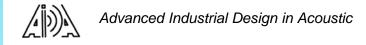
#### Transmitting system:

<u>QSC PLX-1202</u> power amplifier




Advanced Industrial Design in Acoustic

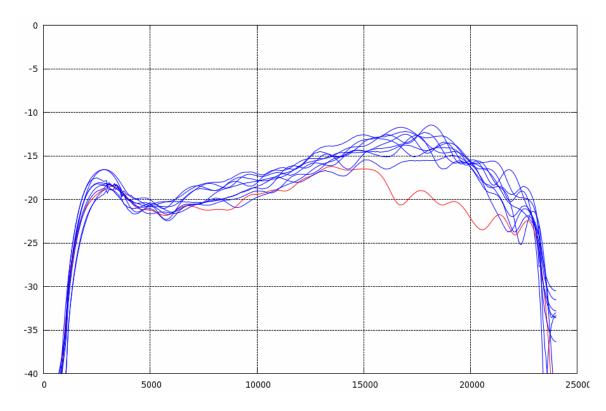




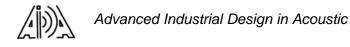

### Acoustic characterization of the array

To characterize the acoustic behavior of the array of receivers, the equipment (omnidirectional source and array) was set on the flat bottom of a large and 3.8 m deep pool.




• Test signal: long linear sine sweep (1÷23 kHz).

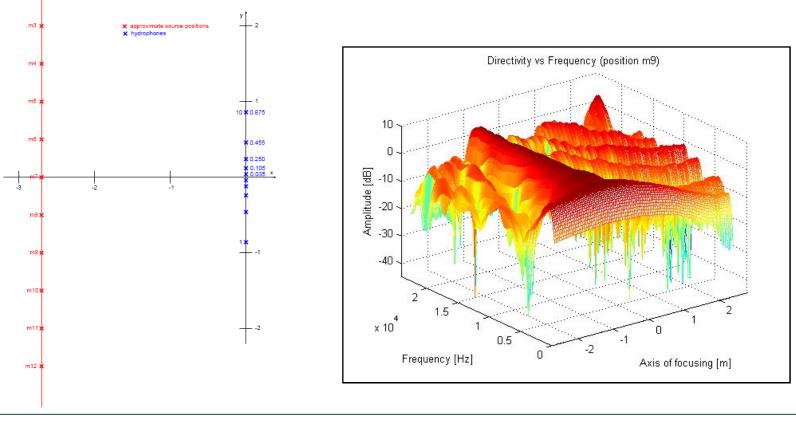


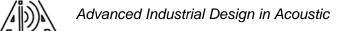



### Acoustic characterization of the array

• Test signal: long linear sine sweep (1÷23 kHz).



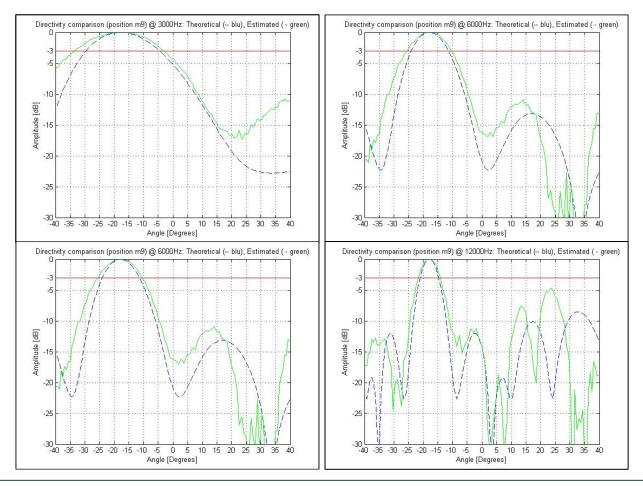

 Frequency responses of the ten hydrophones are very similar except for one transducer (shown in red) that has a higher attenuation at frequencies over 15 kHz



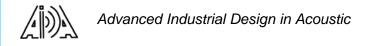



# Acoustic characterization of the array

- Distance between planes containing source and array is equal to 3 m;
- source placed in 7 different positions (m4÷m10) in front, on left and on right of the array centre;
- estimated directivity using real measures and beamforming (step 5cm).






### Acoustic characterization of the array

Comparison between theoretical (blu) and estimated (green) directivity, position m4, m7, m9 @ freq. 3, 6, 9 and 12 kHz.



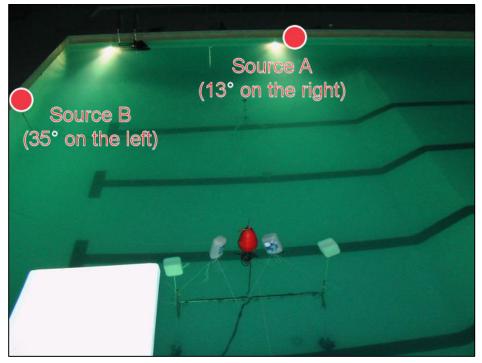
23 June 2009

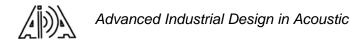




### "Passive mode": DOA estimation

• Test oriented to estimate the capability of the system to find the direction of arrival of the sound (DOA).

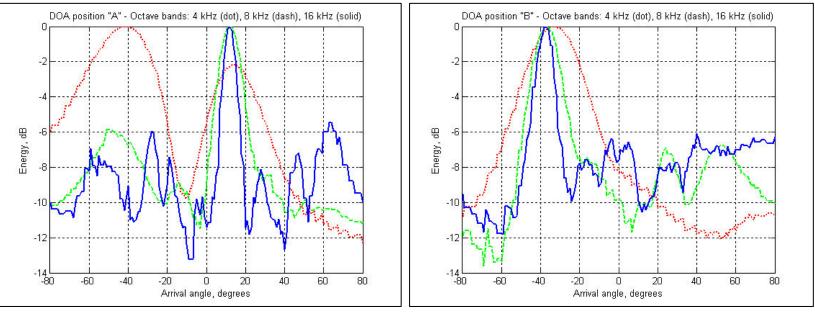

#### Sound Source:


sound generated ramming simultaneously two iron plates in the water in two different positions:

- *Position A* (13° on the right);
- Position B (35° on the left);

Post-processing based on:

- Inverse filtering
- Beamforming (step of 1°)





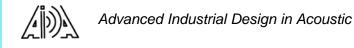



### "Passive mode": DOA estimation

- Analysis was performed in octave bands and the most significant results were obtained in the 4, 8 and 16 kHz bands.
- Confined environment (swimming pool)  $\Rightarrow$  reflections on the walls.
  - <u>Position A:</u> effects noticeable at low frequencies (4 kHz band), a broad lobe is present at around -40°, caused by reflections on the lateral wall. This "false image" disappears with increasing frequency because it increases the array directivity.
  - *Position B:* it is apparent only direct sound, reflections are not appreciable.

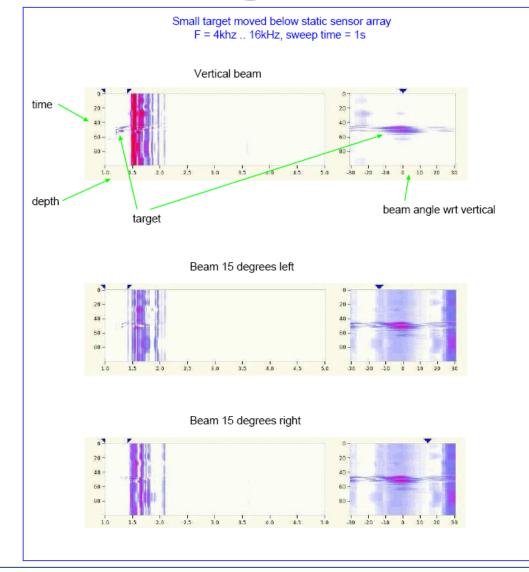




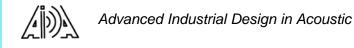



### "Active mode": target research

To discover submerged objects inside a large pool (2 m deep) and to test array and the new real-time software (by Fons Adriansen).

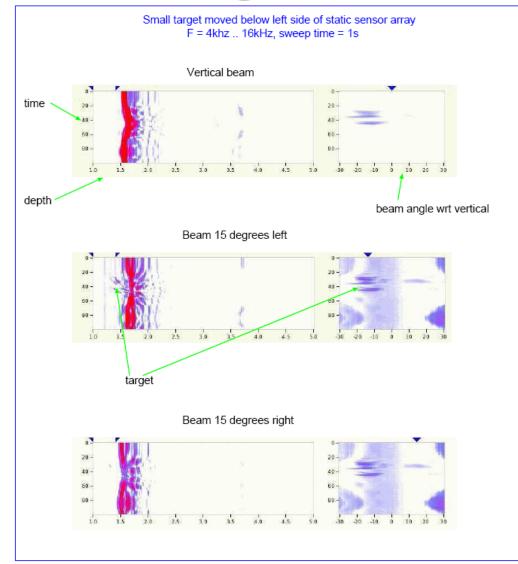



- Equipment (1 source and "array" of receivers) mounted on a special "raft" and object was pulled under the raft with uniform speed.
- Test signal: linear sine sweep.

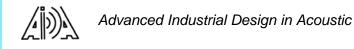





### "Active mode": target research

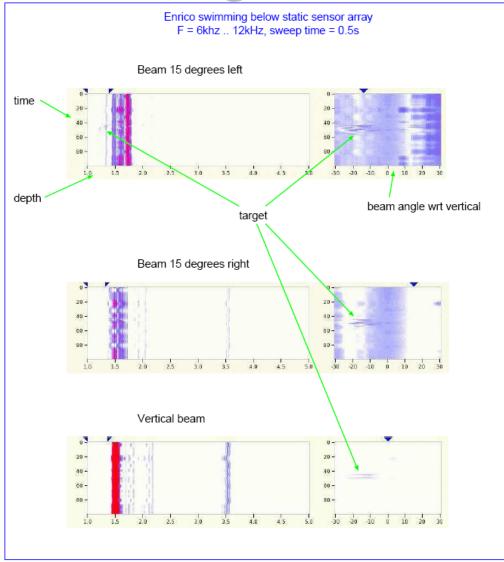



23 June 2009

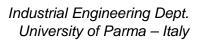





### "Active mode": target research




23 June 2009






### "Active mode": target research



23 June 2009





# "Active mode": target research

<u>"virtual" beamforming</u> making use of a number of adjacent impulse responses (optimal results  $\Leftrightarrow$  virtual array of 5 mic.).

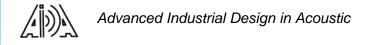
| D:\Users\Armelloni\Lavori\Piscina Perino\IR_prova_03_arr.wav                                                                                                                         | D:\Users\Armelloni\Lavori\Piscina Perino\IR_prova_03_arr.wav                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Edit Picture   Measurement Values   Scales Steps     Zoom Factors:   Horiz.   4     Vert.   4   Horiz. Speed (mm/s)   1500     White-Black Range (dB)   80   N. Micr. (Beamform)   0 | Edit Picture Measurement Values Scales Steps   Zoom Factors: Horiz, Speed (m/s) 1500   Vert Horiz, Speed (mm/s) 65   White-Black Range (dB) N. Micr. (Beamform)     Sound Speed (m/s) 1500   Horiz, Speed (mm/s) 65   Horiz, Step (m) 1   Horiz, Step (m) 1   N. Micr. (Beamform) 5 |  |  |
| 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 (670<br>0                                                                                                                   | 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 (\$70<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                             |  |  |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                              | 0                                                                                                                                                                                                                                                                                   |  |  |
| (ms                                                                                                                                                                                  | (ms                                                                                                                                                                                                                                                                                 |  |  |

Measure *without* beamforming (left) and *with* fixed focalization at 2.0 m (right).

23 June 2009





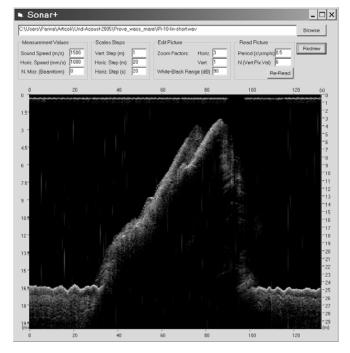

### "Active mode": target research

<u>"virtual" beamforming</u> making use of a number of adjacent impulse responses (optimal results  $\Leftrightarrow$  virtual array of 5 mic.).

| D:\Users\Armelloni\Lavori\Piscina Perino\fornovo\Prova_03_arr_filtrato3k-37k.wav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Browse               | D:\Users\Armelloni\Lavori\Piscina Perino\fornovo\Prova_03_arr_filtrato3k-37k.wav                                                                                                                                                                                                                                                                                   | Browse         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Edit Picture     Measurement Values     Scales Steps     Re-Read       Zoom Factors:     Horiz.     4     Sound Speed (m/s)     1500     Vert. Step (m)     0.5     Horiz. Steed (mm/s)     No.     No. | Redraw               | Edit Picture     Scales Steps       Zoom Factors:     Horiz.       Vert.     2       White-Black Range (dB)     130       N. Micr. (Bearnform)     3         Scales Steps       Vert.     2       White-Black Range (dB)     130         Scales Steps         Vert.     100       N. Micr. (Bearnform)     3         Horiz.     Step (s)         P(s)samples     1 | Redraw         |
| 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180 190 200 (s)<br>0 | 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 1<br>0                                                                                                                                                                                                                                                                                                | 80 190 200 (s) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.5                |                                                                                                                                                                                                                                                                                                                                                                    | - 0.5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1                   |                                                                                                                                                                                                                                                                                                                                                                    | -1             |
| 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1.5                |                                                                                                                                                                                                                                                                                                                                                                    | -1.5           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2                  |                                                                                                                                                                                                                                                                                                                                                                    | - 2<br>- 2.5   |
| 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 3                  | 2-                                                                                                                                                                                                                                                                                                                                                                 | - 3            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 3.5                |                                                                                                                                                                                                                                                                                                                                                                    | - 3.5          |
| 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 4                  | 3-                                                                                                                                                                                                                                                                                                                                                                 | - 4<br>- 4.5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5                   |                                                                                                                                                                                                                                                                                                                                                                    | 4.5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 5.5                |                                                                                                                                                                                                                                                                                                                                                                    | - 5.5          |
| 4 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6                   |                                                                                                                                                                                                                                                                                                                                                                    | -6             |
| the second of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 6.5                |                                                                                                                                                                                                                                                                                                                                                                    | -6.5           |
| 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 5                                                                                                                                                                                                                                                                                                                                                                  | -7.5           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 8                  |                                                                                                                                                                                                                                                                                                                                                                    | - 8            |
| 이 이번 것은 것은 것은 것을 것 같아. 것 같아요. 한 것 같아요.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 8.5                |                                                                                                                                                                                                                                                                                                                                                                    | - 8.5          |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 9                  | 6 -                                                                                                                                                                                                                                                                                                                                                                | - 9<br>- 9.5   |
| (ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | (ms                                                                                                                                                                                                                                                                                                                                                                | - 9.5<br>(m)   |

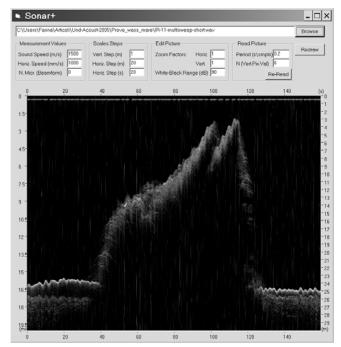
<u>Lake depth = 6.20 m and <u>Target height = 0.35 m</u>.</u>

23 June 2009



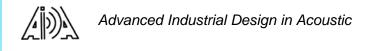



### "Active mode": target research


"Lin" sine sweep

2.4 to 45.0 kHz - duration = 0.5 s.




"Lin" sine multi-sweep

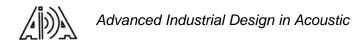
2.4 to 45.0 kHz



- Measurements performed in the open sea, in front of Tinetto cliff.
- Equipment (2 hydroph. ITC 5264) mounted on a WASS vessel.
- The micro ripple on the bottom profile is due to the boat pitching.
- Different bottom layer are well-defined.

23 June 2009






### Conclusion

- Implementation of a low-cost system and software, based on a "Not-Uniform Linear Array" is possible;
- Good agreement between the estimated and theoretical values of array directivity.
- Good capability of the system to detect real angle of incoming sound (DOA), especially at medium-high frequencies (greater directivity). (*Passive sonar*)
- Identification of submerged objects placed in a wide angle under the array is possible. (*Active sonar*)
- The linear sine sweep shows high SNR, high immunity to external noise and good capability to penetrate in the sediments.

### **Future Work**

• Test of the penetration performance for the new array system.





### **Acknowledgements**

The authors want to express their gratitude to:

- the company WASS (Whitehead Alenia Sistemi Subacquei) (<u>http://www.wass.it</u>) that has supported this research supplying transducers and electronic equipment, and advising the authors in the choice of transducers.
- **Dr. Michele Zanolin** (Embry-Riddle Aeronautical University Prescott (AZ)), who attended some of the measures and provided the sound source used in the characterization of the array.