AES 112th Convention 2002 May 10–13 Munich, Germany

AUDIO ENGINEERING SOCIETY Different approaches for the

Different approaches for the equalization of automotive sound systems

Angelo Farina, Alberto Bellini, Marco Romagnoli

romagnolim@askgroup.it ASK Industries ITALY

Automotive Sound & Communication

Outline

- 4 analog audio-in, 4 analog audio-out system with car-audio quality;
- 4 separate channels digital processing;
- Comparison between different equalization algorithms;
- Hardware implementation on a 16 bit fixed-point DSP platform;
- Filter software synthesis with a dedicated Java desktop; application: DIGItools;
- Software implementation of different equalization algorithms;
- Experimental results;

Hardware platform adopted

- separate digital processing of 4 audio channel
- 12 V supply voltage
- Bandwidth 20-20000 Hz, Sampling rate 48kHz,
- A/D conversion resolution 24 bit
- 100 dB Signal-to-Noise Ratio, Low distortion
- THD < 0.01%
- DSP: TMS320VC5402
- 400 MAC/sample x channel
- CODEC: TMS320AD77C, 24bit @48kHz

Hardware platform adopted

Single bi-quad IIR 2nd order filter direct form II

$$H(z) = \frac{\sum_{k=0}^{k=2} b_k z^{-k}}{1 - \sum_{k=0}^{k=1} a_k z^{-k}}$$

IIR Filters:

advantages:

- Equivalent to analog filters
- Low power calculation needed

disadvantages:

- Not always stable
- Not linear phase

IIR filter structure

- A(z) = All-pass filter
- K = Gain
- fc and Q inside A(z)

Advantanges:

Average energy at each node is automatically normalized to 1

Disadvantages:

Higher cost in term of necessary power calculation

$$H(z) = \sum_{k=0}^{k=N-1} h(k)z^{-k}$$

FIR filters:

advantages:

- Always stable
- Linear phase
- High efficient algorithms on DSP platforms

disadvantages:

 Low resolution in the low frequency range

Dual-Rate FIR filter

advantages:

- better equalization at low frequencies
- equivalent increase of MAC/sample

disadvantages:

- complex structure
- very steep crossover filter require

Warped FIR filters:

advantages:

 higher resolution at low frequencies, lower resolution at high frequencies

disadvantages:

- more complex structure than standard FIR filter
- potentially unstable

Select-Save and BruteFIR filters:

- Frequency domain filters based on the FFT algorithm
- Select-Save: It allows the realization of filters with high resolution but it requires a large DSP memory to store partial results and FFT results.
- Brute-FIR: Is a partitioned frequency domain convolution filter that requires less memory than the Select-Save algorithm.

Design Flow

Software tools: DIGItools

- Filter synthesis
- Real-time communication with DSP
- Possibility to switch between several platforms

Software tools: IIR filter synthesis

Software tools: FIR filter synthesis

Car acoustic measurements

- Bruel & Kjaer microphones
- FL, FR, RL and RR response measurements
- Aurora software for MLS signal generation and deconvolution

Aurora GUI

- MLS signal generations
- Car cockpit response calculation through deconvolution

Experimental set-up

The DSP equalizer was tested on FIAT Stilo equipped with the sound system configured as follow:

Delay Introduction

Amplitude Norm. 0.04 0.02 0.06 0.08 0.1 0.12 time (s) 0.5 Amplitude Norm. 0.02 0.04 0.06 0.08 0.12 0 0.1 time (s)

Not Aligned responses

Aligned responses

FIR experimental results

FIR filter synthesis with DIGItools

— FIR filter

Normal Car response

Equalized

FIR experimental results

Equalized car measurement

SPL measurements
DIGIcar 455 FIR
equalization

Equalized Normal

FIR experimental results

AQT della misura FIR

IIR experimental results

IIR Filter designed with DIGItools

- IIR Filter
- Car cockpit response FL
- Equalization

IIR experimental results

Filtro misurato in auto

Listening tests

sound system without equalization

sound system equalized with FIR filters

Conclusions

- Multi-channel digital filters equalization;
- Automatic design of digital filters with the software *DIGItools*;
- Implementation on DSP systems;
- Experimental results and listening tests;